Hubble Space Telescope studies of low-redshift Type Ia supernovae: Evolution with redshift and ultraviolet spectral trends

We present an analysis of the maximum light, near ultraviolet (NUV; 2900-5500 A) spectra of 32 low redshift (0.001<z<0.08) Type Ia supernovae (SNe Ia), obtained with the Hubble Space Telescope (HST). We combine this spectroscopic sample with high-quality gri light curves obtained with robotic telescopes to measure photometric parameters, such as stretch, optical colour, and brightness. By comparing our data to a comparable sample of SNe Ia at intermediate-z (0.4<z<0.9), we detect modest spectral evolution (3-sigma), in the sense that our mean low-z NUV spectrum has a depressed flux compared to its intermediate-z counterpart. We also see a strongly increased dispersion about the mean with decreasing wavelength, confirming the results of earlier surveys. These trends are consistent with changes in metallicity as predicted by contemporary SN Ia spectral models. We also examine the properties of various NUV spectral diagnostics in the individual spectra. We find a general correlation between stretch and the velocity (or position) of many NUV spectral features. In particular, we observe that higher stretch SNe have larger Ca II H&K velocities, that also correlate with host galaxy stellar mass. This latter trend is probably driven by the well-established correlation between stretch and stellar mass. We find no trends between UV spectral features and optical colour. Mean spectra constructed according to whether the SN has a positive or negative Hubble residual show very little difference at NUV wavelengths, indicating that the NUV evolution and variation we identify do not directly correlate with Hubble residuals. Our work confirms and strengthens earlier conclusions regarding the complex behaviour of SNe Ia in the NUV spectral region, but suggests the correlations we find are more useful in constraining progenitor models than improving the use of SNe Ia as cosmological probes.

Paper Reference: 
Publication Date: 
11 August, 2012